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The stability of Couette flow in Hel l  is considered by an analysis of the HVBK 
equations. These equations are based on the Landau two-fluid model of Hel l  and 
include mutual friction between the normal and superfluid components, and the 
vortex tension due to the presence of superfluid vortices. We find that the vortex 
tension strongly affccts the nature of the Taylor instability a t  temperatures below 
z 2.05 K. The effect of the vortex tension is to make non-axisymmetric modes the 
most unstable, and to make the critical axial wavelength very long. 

We compare our results with experiments. 

1. Introduction 
The flow of a liquid between rotating concentric cylinders, known as Couette flow, 

has long been recognized as one of the fundamental problems in fluid dynamics. 
Couette flow has a very extensive literature, both theoretical and experimental : a 
review has been made by Di Prima & Swinney (1981). Alongside BBnard convection, 
Couette flow has provided an arena where new ideas and methods about stability, 
nonlinear behaviour and the approach to turbulence can be tested. 

The question that we want to address in this paper is the following : what happens 
if the liquid contained between the two rotating cylinders is superfluid helium 
(helium 11) instead of an ordinary classical liquid. Little is known about this 
‘superfluid Couette ’ problem compared to the vast literature existing about its 
classical counterpart. 

From the experimental point of view, the superfluid case presents difficulties due 
to the low-temperature environment and the lack of flow visualization, but these are 
not insuperable problems. The major difference lies in the fact that we can study the 
classical Couette case on the sound ground of the Navier-Stokes equations, while we 
do not know with the same confidence the equations of motion of helium 11. 

A severe test which we can perform on proposed fluid equations is the prediction 
of a hydrodynamical instability. The purpose of this paper is therefore to study 
whether the equations which are believed to describe the motion of helium I1 can 
predict the onset of a secondary flow in the very simple Couette geometry. 

Some experiments which are relevant to the study of this instability have been 
performed in the past and have been recently reviewed by Donnelly & LaMar (1988). 
They showed that the stability of the flow of helium is very different from the 
stability of a classical fluid. However no very clear picture emerges from the 
experiments. This is partly because the experiments have been performed a t  a 
variety of different temperatures, and the physical properties of helium I1 vary 
dramakically with temperature. What is clearly missing is a theoretical framework to 
help in interpreting the data of different experiments. It is the aim of our 
investigation to get such a framework, so as to understand the past experiments and 
to suggest how a future helium Couette experiment should be planned. 
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Some of the early experiments were performed in order to measure the viscosity 
of liquid helium (the Couette apparatus is indeed a viscometer). Donnelly & LaMar 
remarked that nowadays there is an uncertainty of 30 YO in the value of the viscosity 
near the temperature of the h-transition. Our study should therefore also benefit the 
design of a modern viscometer. 

2. Previous work 
The first pioneering attempt to calculate the stability of helium 11 flowing between 

rotating concentric cylinders was made by Chandrasekhar & Donnelly (1957). They 
used Landau’s two-fluid model, which describes helium I1 as a mixture of two fluids : 
a perfect inviscid component (the superfluid) and a viscous component (the normal 
fluid). Detailed descriptions of the two-fluid model can be found in general references 
on superfluidity such as the books of Khalatnikov (1965) and Donnelly (1967). Here 
it suffices to remark that the relative amounts of normal fluid and superfluid depends 
on the temperature T .  At T = 0 the fraction of normal fluid is zero and helium is 
entirely superfluid ; as we increase the temperature the fraction of normal fluid grows, 
until it becomes one a t  the transition temperature T = 2.172 K ,  called the h-point 
(we always consider saturated vapour pressure) : then there is no superfluid left and 
helium I1 has become helium I, an ordinary classical liquid, albeit cold. If helium I1 
rotates then the two-fluid model requires modifications, because the superfluid 
devclops quantized vortex lines. I n  a simply connected container rotating a t  
constant angular velocity Q these lines are aligned along the axis of rotation and 
form an ordered array of density n = 2Q/r, where r is the quantum of circulation 
(Planck’s constant divided by the mass of the helium atom). The thermal 
excitations (phonons and rotons) which make up the normal fluid collide with the 
cores of the vortex lines. The vortices therefore introduce a coupling between the 
normal fluid and the superfluid, called mutual friction, which was being investigated 
a t  the time when Chandrasekhar & Donnelly wrote their paper. 

The argument of Chandrasekhar & Donnelly proceeded as follows. First they 
reasoned that in the absence of this coupling the two fluids would move 
independently. On the one hand, without mutual friction, the superfluid would obey 
Itayleigh’s stability criterion for a classical inviscid fluid. Let us suppose that, for 
example, the outer cylinder is a t  rest. The superfluid would be unstable for any 
rotation velocity of the inner cylinder. On the other hand, without the coupling, the 
normal fluid would behave like an ordinary viscous liquid and would become 
unstable only if the velocity of the inner cylinder were higher than a critical value, 
as in the classical Couette problem. Following these considerations, Chandrasekhar 
& Donnelly calculated the effect of the mutual friction coupling and found that the 
first onset (the instability of the superfluid) is raised from zero to a finite rotation 
velocity of the inner cylinder. 

In  1963 Mamaladze & Matinyan remarked that a new physical effect should be 
taken into account: the vortex lines have tension and thus they should provide a 
restoring force for a displaced element of fluid. They ignored the normal fluid, and 
thus the mutual friction, restricting their attention to the pure superfluid (helium I1 
at zero temperature). They found that the instability occurs a t  non-zero rotation 
velocity of the inner cylinder, as did Chandrasekhar & Donnelly, but for a different 
reason (vortex tension as against mutual friction). 

The modern description of the flow of helium I1 in the presence of vortex lines a t  
non-zero temperature is given by the so-called Hall-Vinen-Bekharevich- 
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Khalatnikov equations (HVBK) (Hall & Vinen 1954 ; Bekharevich & Khalatnikov 
1961 ; Hills & Roberts 1977). They are a gencralization of Landau’s two-fluid model to 
include mutual friction as well as vortex tension. The mutual friction force ronsists 
of a parallel and a transverse part, with coupling coefficients which are well known 
nowadays (Swanson et al. 1987); the calculation of Chandrasekhar & Donnelly 
contained only the parallel force. In  1974 Snyder briefly reported the preliminary 
results of trying to use the HVBK equations to predict, the onset of instabilities in 
his helium Couette experiment. He computed a single stability point, which did not 
compare well with the experimental data. He did not follow up his work. 

To conclude this summary of previous theoretical work on the subject, we finally 
note that in a recent paper (Barenghi & Jones 1987) we have found that the 
calculation of Mamaladze & Matinyan was unfortunately not correct. Our revised 
and extended calculation for the case of helium a t  zero temperature shows how the 
Rayleigh criterion is modified by the presence of the vortex lines, i.e. how the pure 
superfluid differs from the classical inviscid fluid. We shall come back to this in 

A complete review of the experimental work on the subject is already contained in 
the recent paper by Donnelly & LaMar and we do not need to summarize it here. In 
$6 we shall discuss in detail some selected experiments which, in view of our 
calculation, highlight the features of helium Couette flow. For the moment we simply 
remark that two different experimental techniques have been used. In the first 
method one measures the torque which the fluid, driven by one cylinder in motion, 
transmits to the other cylinder a t  rest. At small velocity the torque gives the value 
of the viscosity of the fluid; when the velocity of the moving cylinder reaches a 
critical value the linear relation between torque and angular velocity shows a break. 
Subsequent bifurcations in the flow pattern will, in general, give rise to further 
breaks in the torque-angular velocity curve. In  the other method one makes use of 
second-sound waves. Second sound is attenuated in the bulk helium, but an extra 
attenuation is caused by the presence of the vortex lines which are set in a direction 
perpendicular to the direction of sound propagation. Thus second sound gives 
information about both the magnitude and the direction of the vorticity. However 
second sound does not exist above the h-point, so this method can be used only in 
helium 11, while the torque method can be used in both helium I and helium 11. In 
the second-sound method, angular velocity is plotted against the attenuation factor, 
and breaks in the curve are interpreted as transitions in the flow. 

Both these techniques suffer from the difficulty that i t  is not always clear which 
break in the curves corresponds to which transition in the flow. As we see later, it is 
fairly clear that in some experiments the breaks in the curves have not been 
interpreted correctly . 

§6. 

3. The equations of motion 
Let R, and R, be the radii of the inner and outer cylinder, rotating at  constant 

angular velocities SZ, and SZ, respectively. In  our theory we make the assumption 
that the cylinders have infinite length, while in the real apparatus the length of the 
cylinders is h. This assumption is discussed below. Liquid helium is contained in the 
gap of width S = R,- R, between the cylinders. The total helium density is 
p = pn + ps, where ps is the superfluid density and pn is the normal fluid density (we use 
the subscripts s and n for the superfluid and the normal fluid and follow the notation 
introduced by Chandrasekhar & Donnelly 1957). Let p ,  S and T be the pressure, 
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specific entropy and temperature. The viscosity of the normal fluid is T~ and its 
kinematic viscosity is u, = qn/pn. The normal fluid and superfluid velocities u, and 
u, are macroscopic fields averaged over a region containing many vortices. The 
vortices have elastic properties, a fact demonstrated experimentally by the 
observation of vortex waves (see e.g. Glaberson & Donnelly 1986). The vortex-line 
tension parameter is us = (r/4x) log (b la ) .  In this expression the quantities a and b 
are the limits of integration of the kinetic energy of the superfluid around a vortex 
line: therefore for a we take the vortex core radius and for h we take the distance 
between vortices, nd, where n is the number of vortex lines per square centimetre. 
Note that us has the dimension of a kinematic viscosity and in the situations in which 
we are interested us is of the order of un or larger. 

The mutual friction force is proportional to  

F = iB&, x (w, x (u , -  us- us curl&,)) +!$I'm, x (on-- us- us curl &,), (1) 

where w, = curlu, and &, = 0,/10,1 is a unit vector. This form of the force was 
deduced by second-sound experiments in rotating helium. The parallel dissipative 
part, proportional to a coefficient B, gives rise to a contribution to the attenuation 
of second sound ; the transverse part, proportional to another coefficient B', couples 
otherwise degenerate modes in a resonant cavity. The coefficients B and B' are 
known from experiments. The parameters a, 12, B', p, p,, pn and yn are assumed to 
be only functions of the temperature; their values are taken from the article on 
mutual friction by Barenghi, Donnelly & Vinen (1983). 

Since the velocities in which we are interestcd are small we assume the 
incompressibility conditions 

divu, = 0, (2) 

divu, = 0. (3) 

Following Hills & Roberts (1977) we can now write the HVBK equations, which 
describe the motion of helium in the presence of vortices. 

avn  P -+ (u , .V)  u, = - V u n + u , V 2 U n + ~ F ,  
at P 

au, Pn - + (us - V) us = - Vcrs - us w, x curl &, -- F, 
at P 

(4) 

(5) 

where we have defined 

P Pn P S Y S  I % /  us = U - T X + - - - - ( u n - u , ) 2 +  
P 2P P 

and crn = U+"TX+-+"(un-u,)2+ P P P  P S V S  IwsI 
P* P 2P P 

Here p is the pressure: U and X are the internal energy and entropy per unit mass, 
which we assume to be constant a t  a given temperature. Note the term w, x curl hS, 
which gives the acceleration of the superfluid due to bent vortex lines. The 
equations (4) and (5) are derived on the assumption that the vortices do not have 
tight curvature (a phenomenon which happens for example in the turbulent flow of 
the superfluid : Donnelly & Swanson 1986) and this is consistent with the problem we 
want to study. We have also to assume that the timescales of the flow in which we 
are interested are longer than the timescale for a single vortex to  nucleate. As at  this 



The stability of the Couette flow of helium I I  555 

stage we want to keep the problem simple, we neglect the effects of collective motion 
of the vortices, called Tkachenko waves (see e.g. Glaberson & Donnelly 1986), and 
the velocity dependence of B and B' (Swanson et al. 1987), both of which have been 
observed experimentally. 

We also ignore other ingredients which have been discussed in the literature but 
for which there is not clear experimental evidence, such as the possibility of a third 
term of axial mutual friction (which, if it exists, has to be very small: Mathieu, 
Placais & Simon 1984) and of a mass density in the vortex cores, which has been 
considered in the modern derivation of the HVBK equations (Hills & Roberts 
1977). 

The equations (1)-(5) have three limits of physical interest: 
(i) if T+2.172 K then ps+O and the normal fluid equation (4) describes the 

classical Couette problem (in particular the flow of helium I). This limit T-t2.172 K 
has to be regarded as a formal one, for the purposc of comparison with the classical 
viscous case. The vortex core parameter a will grow and diverge as the &transition 
is approached. In  consequence, the assumption that a is small compared to the 
intervortex spacing will no longer be valid and the HVBK equations will no longer 
hold. This divergence of a only occurs, however, at temperatures very close to the 
h-point temperature (Glaberson & Donnelly 1986). 

(ii) if T + 0 K then pn + 0 and the superfluid equation (5) describes a pure superflow 
(helium I1 a t  T = 0) which we have studied in a previous paper (Barenghi & Jones 
1987). 

(iii) if T + O  K and the quantum of circulation T-0, equation (5) describes the 
ideal fluid of classicLa1 fluid mechanics. 

Furthermore we have the boundary conditions. In the Couette geometry the 
natural coordinates are cylindrical ( r ,  #, 2 ) .  The superfluid can slip at the cylinders 
but the normal fluid cannot, so 

4. The Couette flow solution 

seek a st8eady axisymmetric solution of (1)-(5) of the form 
We have now to find the stationary solution that corresponds to Couette flow. We 

un = (0, un(r)> 0), us = (0, us(r) ,  0). (7) 

The superfluid vorticity is in the z-direction, so that dS = i .  The mutual friction 
therefore has the form 

i d  i d  
r dr r dr 

F =  ~ ~ ~ ( u ~ - ~ ~ ) - - ( r ~ s ) + ~ ~ ~ ( u s - w n ) - - ( r w s ) .  

From the #-component of the superfluid equation (5), we have 

i d  
(us-un)--(rus) = 0, 

r dr (9) 
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since the state we are seeking is independent of 4. We have two alternatives : either 
v, = K / r  and there is no superfluid vorticity in the gajp between the cylinders, or 
v, = v,. In either case (8) implies that  F = 0, so the $-component of the normal fluid 
equation (4) leads to 1 d dw, 

---r--wn/r2 = 0, 
r dr dr 

with solution v, = Ar + C / r  ; the constants A and C are determined by the boundary 
conditions at  r = R, and R, to give 

(10) 

a,s in classical Couette flow. Note that the vorticity associated with this flow is 
uniform between the cylinders and has value 2A. On subtracting the radial 
components of (4) and (5) we obtain 

- - (W,-W,)  dr g- P n  
dr pS 

We now derive an important distinction between the alternative types of solution 
admitted by the HVBK equations: if v, = v, an isothermal solution exists, but if 
there is no superfluid vorticity between the cylinders T cannot be constant. 

The state we consider in this paper is the solution 

v, = v,. (13) 

This implies that there are superfluid vortices in the gap, and that they have a 
uniform density given by n = 2lAl/J'. If only the inner cylinder rotates then A < 0 
and the vortices are antiparallel to the direction of rotation ; on the other hand if only 
the outer cylinder rotates A > 0, and the vortices are parallel to the rotation. 

There is some experimental evidence that the superfluid velocity is given at least 
approximately by (13) in the Couette regime (Donnelly & LaMar 1988). For rotation 
of either outer or inner cylinder Bendt (1967) found that the radial attenuation of 
second sound was proportional to the vorticity )2AJ of the Couette state, until the 
rotation is sufficiently high for an instability to result. This result is consistent with 
the vortices having a density proportional to IAl. Swanson & Donnelly (1987) argued 
that the first row of vortices appear (for narrow gaps) when 

(14) 

and they present experimental evidence to support this view. The value of SZ 
corresponding to this threshold for the first entry of vortices is significantly below the 
value a t  which we expect instability. While this evidence supports (13),  there are 
some uncertainties which should be borne in mind. The HVBK equations are based 
on an approximation in which the intervortex spacing is small compared with the 
lengthscale of the apparatus, which in this problem means the gap width 6. For some 
of the experiments this condition is satisfied reasonably well, but in others there may 
be only two or three rows of quantized vortices across the gap when instability 
occurs. As it is difficult to say how well the continuum approximation performs in 
these circumstances, i t  is important to bear in mind how many rows of vortices are 
prescnt when comparing theory and experiment. 

Another major problem is the uncertainty about the effect of the endwalls. In  
classical Couette flow the cndwalls give rise to a meridional circulation even a t  slow 

(A( > r log (z6/xa)/na2 
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flow; in consequence, when end eEects are taken into account the transition to 
Taylor vortices is not a sharp bifurcation but a transition over a range of Reynolds 
numbers. The same behaviour must be expected here : the experiments are normally 
performed with fixed endwalls, and the normal fluid velocity must vanish there. The 
precise nature of the boundary conditions satisfied by the superfluid is not known. 
Experiments on the flow between oscillating disks suggested to Hall (1960) that the 
vortices are not necessarily pinned to the endwalls, and some slipping may occur. The 
amount of slipping may depend on the roughness of the surface. 

In  view of these uncertainties, it seems sensible to consider the infinite-cylinder 
theory first, and to relate to experiments where the length of the cylinders is large, 
and the wavelength of the instability is of the same order as the gap width. 

5. The linearized perturbation equations 
We consider a small perturbation of the Couette state v:, v,O: 

vn + up, + u,, (Tn + (Tp, + gn, 

v, + v,O + v,, (T, + (T: + gs. 

If we linearize (1)-(5) and neglect terms that are of second or higher order in the 
perturbations, we obtain the following equations : 

v.vn = 0, 

V * v ,  = 0. 

where the operator L is defined by 
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and where the Couette velocity u: = (0, w:, O) ,  and we define the perturbed mutual 
friction components 

a A c ?  
f, = -IAl B(vnr-?/’s,)-A~(v,g--,g)- V,.H-W~~+ vs+H’- -w.,,. ax IAI az  

It is useful to  make the variables of our problem non-dimensional. We define 

and 

where f = n, s and c = r ,  6. z .  

cylinder, Re, and Re, respectively, defined as 
The non-dimensional velocities are the Reynolds numbers of the inner and outer 

R P ~  = Q 1 K ,  S/V,, RP, = 0, R,S/v,. (25) 

When Re, = 0 we shall make use of another non-dimensional velocity, the Taylor 
number 

(26) 

which is often used in the literature on the classical Couette problem. Finally we 
define the tcrnperature-dependent parameters 

We then assume that the perturbations have the dependence exp (im# + ik<+ ip7). 
Since we shall eliminate vnz and w,, from (15)-(22) the boundary conditions at  x = 0 
and 5 = 1 are 

d 
dx l’,, = 0, Vnd = 0, v,, = 0, - v,, = 0. (28)  

The system of equations (15)-(22) is of eighth order. For comparison note that the 
classical Couette problem and the pure supclrfluid problem are respectively of sixth 
and second order. 

The space of parameters is large: we have to  assign the radius ratio 7 = R,/R,, 
the non-dimensional wavenumber k and the azimuthal wavenumber m of the 
perturbation, the Reynolds numbers Re, and Re, (if Re, = 0 we can also use the 
Taylor number T a )  and the parameters p, y,, y:, y, and y: which are temperature 
dependent. 

A comparison with a given experimental situation requires also the value of the 
gap S. Note how /3 is obtained. v, has a logarithmic dependence on the ratio between 
the intervortex spacing 6 and the vortex core parameter a, which is determined by 
the temperature, T ,  b is found from 6, RP,,  RP, and v, (determined by T) .  Thus v, 
depends weakly on 6, and then we have p = v,/v,, We condude that the eigenvalue 
problem is specified by thc scven parameters 7 ,  Re,, Re2, k, m, T and 6. The sign of 
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the imaginary part of the eigenvalue p determines the stability of the flow: if 
Im ( p )  < 0 the flow is linearly stable. 

The eigenvalue problem is solved numerically. The method of solution is given in 
the Appendix. 

6. Results and comparison with experiments 
Before discussing the stability of the flow of helium I1 at  non-zero temperature. it 

is useful to summarize what is known about the following two limits: 
( a )  Pure superfluid limit 2’ + 0 K. We have studied this case in our previous paper 

(Barenghi & Jones 1987). Both for situations in which the inner cylinder only rotates. 
or the outer cylinder only rotates, we have found that the non-axisymmetric modes 
(m $: 0) are unstable at long wavelength ( k + - 0 )  and the critical velocity of rotation 
of the inner or outer cylinder tends to zero as k + 0. In  the case of rotation of the inner 
cylinder in the limit of narrow gap we have shown analytically that the m = 0 
instability sets in at velocity 9 given by the root of 

2 R - v s k 2 = 4 9 (  vs(l-s) 96z ) t 
(29) 

(b)  Pure normal fluid limit, T + 2.172 K. This is the Couette problem for a classical 
liquid. If the inner cylinder rotates a t  constant angular velocity 9, and the outer 
cylinder is a t  rest, it  is known that the Conette azimuthal flow is stable if 9, is less 
than a critical velocity Q C .  Above that critical velocity, modes with m = 0 become 
unstable and the flow breaks into a system of Taylor vortices. These vortices have 
axial wavelength corresponding to approximately square cells, k z x: being the 
critical wavenumber. If the outer cylinder rotates a t  constant angular velocity Qz 
and the inner cylinder is a t  rest the flow is stable. 

Let us now consider the general situation in which 0 < T < 2.172 K. First we 
consider the case in which only the inner cylinder rotates. To start with, we 
concentrate our attention on the experiments of Donnelly (1959). His apparatus had 
a radius ratio q = 0.95 and the gap was 6 = 0.1 cm. The measurements were done by 
looking a t  the breaks in the relation between the Reynolds number and the torque 
induced on the outer stationary cylinder by the liquid helium, driven by the inner 
rotating cylinder. The experiment was repeated a t  three temperatures T = 2.1, 1.5 
and 1.35 K. 

At T = 2.1 K a first break was observed a t  9, = 9, = 0.177 rad/s; a second break 
was seen a t  Q1 = 0.613 rad/s. In  figure 1 we show the results of our theory, with the 
stability boundaries relative to  this experiment, which we have computed for the 
modes m = 0, m = 1 and m = 2. In  this graph the flow is stable below the stability 
boundary of a given mode and unstable above i t ;  the minimum of the lowest curve 
determines the critical velocity : a t  this velocity an infinitesimal perturbation of 
wavelength 2xlk corresponding to the critical wavenumber k can grow exponentially 
and destabilize the flow. Figure 1 shows that the mode m = 0 is the first to become 
unstable: the critical Taylor number corresponds to a velocity of 9, = 0.181 rad/s, 
in good agreement ( z  2 % )  with the observed first break. 

The wavenumber of the instability is k x 0.8 : since Donnelly’s apparatus had 
height h = 5 em, this implies that there were around 12 cells (6 cell pairs) in his 
experiment. Experience with classical Couette flow suggests this should be enough to 
get good agreement with the critical Taylor number. Note, however, that the cells arc 
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FIGURE 1. The stability boundaries a t  11 = 0.95,s = 0.1 em and T = 2.1 K for the modes: 
( a )  m = 0, (b )  1, (c )  2 .  The geometry is as in the experiment of Donnelly (1959). 

k 

far from square: they are nearly 4 times as long as they are wide. We note also that 
a t  the critical velocity there are around 6 rows of vortices in the gap, which should 
be enough for our continuum approximation to be valid. Finally we remark that the 
velocity for the entry of vortices in Donnelly’s apparatus is Q* = 0.047 rad/s 
according to Swanson & Donnelly’s theory : thus we have Q* 4 Q, as one requires for 
consistency. 

In  the experiment no break was observed a t  Q* = 0.047 rad/s: in fact the 
superfluid slips a t  the boundaries and the torque method should not be sensitive to 
the appearance of a row of vortices. We conclude that the Swanson & Donnelly 
theory and our theory provide us with a consistent picture of the experiment: 
the vortex array was created a t  Q, z 0.047 rad/s and became unstable a t  
Q, z 0.18 rad/s. 

Since the aim of our theory is to study the effects of both the vortex elasticity and 
the mutual friction on the stability of helium 11, it  is instructive to see what happens 
to the stability boundary of figure 1 if these ingredients are modified. If the mutual 
friction force is absent but the vortex elasticity is there, then the two fluids decouple 
and the superfluid is unstable for Q, + 0 and k + 0. Figure 2 shows what happens in 
the other case in which we keep the mutual friction, but we modify the vortex tension 
parameter from its full value (curve a )  to half of it (curve 6 )  to us = 0 (curve c) : the 
critical velocity becomes 0.09 rad/s, much lower than the experimental data. 
Comparison of these curves shows that the vortex tension exerts a powerful influence 
even a t  T = 2.1 K, quite close to the h-point, when the superfluid fraction is 
comparatively small. Perhaps even more significant than the increase in critical 
Taylor number is the increase in axial wavelength: with v, = 0 the critical 
wavelength is close to the square-cell value, but with the full value of v, the axial 
wavelength is increased by a factor 4. Curve ( d )  on the same graph is the stability 
boundary calculated by using the analytical Chandrasekhar & Donnelly theory ; the 
small difference between the curves (c) and ( d )  is probably because their theory 
assumes the limit + 1 and neglects the transverse part of the mutual friction. 
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FIGURE 2. The effect of the vortex tension: the parameter values are as in figure 1. ( a )  The stability 
boundary of the rn = 0 mode of figure 1 ; (b )  the same but v, is arbitrary halved ; (c) the same but 
v, = 0, ( d )  the Chandrasekhar & Donnelly (1957) theory. 
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In  their pioneering work Chandrasekhar & Donnelly claimed that two instabilities 
predicted by a linear theory should be observed, one being a raised Rayleigh 
instability of the superfluid and one being a shifted Taylor-Couette instability of 
the normal fluid. This led Donnelly to speculate that the second break that he 
observed a t  0.213 rad/s had to do with the normal fluid. Measurements of the second 
and successive breaks have been done in other experiments, and some comments are 
thus necessary. At  the first transition the mode that becomes unstable grows 
exponentially until the nonlinear terms determine a new stationary state. The second 
observed transition is an instability of this new state. This state is not the Couette 
state, however, so we cannot predict its instability from a linear perturbation of the 
Couette state, the approach used in both our calculation and Chandrasekhar & 
Donnelly’s. However, in the classical Couette problem it is known that,  if the gap is 
narrow, the second bifurcation (the transition from Taylor vortices to wavy Taylor 
vortices) appears at a velocity that is not much higher than the velocity of the first 
onset (Jones 1985a), and the linear perturbation theory of the Couette state is still 
able to predict approximately the second critical velocity. In the experiment of 
Donnelly the gap is narrow and the second observed critical Reynolds number is 
20% higher than the first one; so we suspect, but we cannot really be certain, that  
the second onset has to do with the m = 1 mode of figure 1 which is predicted to onset 
at 3% higher Reynolds number than the m = 0 mode. 

From the following considerations, however, it will become apparent that  too little 
is known about the first onset of the helium Couette problem to worry much about 
the instabilities at higher velocities. 

We study now what happens to the stability boundary of axisymmetric 
disturbances if the temperature changes. Figure 3 shows the results with the 
geometry of Donnelly’s apparatus at different temperatures, T = 2.16, 2.1, 2.05 and 
1.5 K,  together with the curve of the classical Couette problem (at  the same radius 
ratio), which describes helium just above the h-point at T = 2.172 K. One can see 
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F~CIJRE 3. The effect of changing the temperature on the stability boundary of the m = 0 mode of 
figure 1 .  ( a )  The classical Couette case; (b )  T = 2.16 K. ( c )  2.1 K :  ( d )  2.05 K, ( e )  1.5 K. Only the 
bottom part of each stability boundary is plotted for clarity. 
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FIGURE 4. ( a )  The stability boundary for the m = 0 mode for Donnelly's experiment 7 = 0.95, 
S = 0.1 cm and T = 1.5 K. ( b )  The stability boundary for a pure superflow at 7 = 0.95 obtained from 
equation (29). The Taylor number was obtained from v,, a t  T = 1.5 K. 

that the boundary at T = 2.16 K is close to the classical curve, and indeed one should 
herc recover the classical limit. As the temperature decreases the boundary moves to 
the left and the critical velocity changes, but eventually the curve loses its minimum 
and the instability sets in first at long wavelength k --f 0. This is indeed the behaviour 
of a pure superflow at T = 0 : figure 4 shows that the curve corrcsponding to T = 1.5 K 
is close to the curve computed from the approximate expression (29) of a pure 
superfluid in the narrow-gap limit. Note that at T = 1.5 K p,/p = 0.88, i.e. helium is 
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FIGURE 5 .  The stability boundary of the m = 0 mode at T = 2.1 K and S = 0.1 cm for different 
radius ratios 7. (a) 7 = 0.975, (b) 0.95. (c) 0.925. 

almost entirely superfluid. We conclude that we have thus recovered the expected 
results in the two limits of physical interest T + 2.172 K and T --f 0. 

Let us go back now to figure 3 which has important consequences for all helium 
Couette experiments. At low temperature the stability is governed by long 
wavelengths: if these are of the order of the height of the apparatus then the 
experiment is dominated by end efiects. One does not need to reach a very low 
temperature for this to  happen, since p,/p is already about $ at T = 1.95 K and v, is 
generally greater than v,. This tendency of the stability curve to lose its minimum 
and to predict instabilities a t  T a  --f 0 is stronger if the radius ratio decreases : in 
figure 5 we plot the computed stability boundaries a t  T = 2.1 K for 11 = 0.975,0.95 
(which was Donnelly's value) and 0.925. The same features are seen in the case of the 
pure superflow (see figure 6).  

In  conclusion our model shows that the stability curve loses its minimum if the 
temperature is too low or the gap is too wide and assumes the form Ta + 0 as k --f 0. 
In  these cases we cannot really make any clear prediction: the finite height of the 
apparatus puts a lower bound on the possible wavenumbers k, and if the Taylor 
number is too small our continuum model fails since there are not enough vortices in 
the gap. We are thus unable to discuss quantitatively the other experiments of 
Donnelly a t  the lower temperatures T = 1.5 and 1.35 K, and the experiments of 
other authors reviewed by Donnelly & LaMar. 

Let us now consider the case in which the outer cylinder rotates and fz, = 0. An 
early experiment by Heikkila & Hollis Hallet (1955) has shown that the Couette flow 
of helium becomes unstable if fz, is larger than a critical velocity, in marked contrast 
to the behaviour of the classical Couette flow which is theoretically stable for all 
Reynolds numbers. The value of the viscosity, which Heikkila & Hollis Hallet found 
by looking a t  the torque induced on the inner cylinder for Q2 --f 0, agrees with modern 
accepted values, so the observed instability is likely to be real. 

In  our previous work on the stability of a pure superflow we have found that 
rotation of the outer cylinder is unstable to non-axisymmetric modes (m $r 0) and the 
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FIGURE 6. The stability boundary for the m = 0 mode of a superflow a t  different radius ratios 7 
from equation (29). For a pure superflow i t  is convenient to define the non-dimensional velocity 
D, = Ql R, S/v,. (a) 7 = 0.975, (b) 0.95, (c) 0.925. 
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FIGURE 7 .  Rotation of the outer cylinder : the stability boundary of the m = 1 mode with 7 = 0.95, 
S = 0.1 cm a t  (a) T = 1.308 K, (b)  1.82 K ;  the geometry is as in the experiment of Heikkila &, Hollis 
Hallet (1955). 

k 

stability boundaries are such that 52, --f 0 as Ic + 0. This result was surprising, because 
the rotation of the outer cylinder and the elasticity of the vortices would have a 
stabilizing effect if taken separately, but i t  suggests that  the remarkable difference 
between helium and a classical liquid when the outer cylinder rotates is due 
essentially to the vortex lines. One has only to see whether the results hold at non- 
zero temperature when mutual friction couples the unstable superfluid to the stable 
normal fluid. Figure 7 shows the stability boundaries for the m = 1 mode in the 
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FIGURE 8. The data of Wolf et ul. (1981). We plot Tu/Ta,, where T a  is t h e  Taylor number of the 
first observed onset in helium I1 and Ta,  is the critical Taylor number of the classical Couette case 
computed at the same 7: x , 7 = 0.783; 0, 0.8679; 0, 0.9434. 

geometry of the experiment of Heikkila & Hollis Hallet, calculated at T = 1.308 and 
1.82 K ;  there are other modes of higher m under these curves, as in the pure 
superflow case. However, we may conclude that the instability of the pure superflow 
for rotation of the outer cylinder exists a t  non-zero temperature. But again the fact 
that the critical velocities tend to zero as k + O  prevents us from making a 
quantitative comparison with the experiment. Since in their apparatus h = 2.99 cm 
and 6 = 0.106 cm the smallest meaningful value of k in figure 7 is 0.11. 

In their recent paper Swanson & Donnelly (1987) have analysed this experiment 
and compared the measured critical velocity to their calculated velocity for the entry 
of vortices in the flow : they found that the values are very close and suggested that 
they are indeed the same. It is, however, not clear to us how the entry of vortices can 
be observed with the torque method. We can only conclude that the vortices become 
unstable as soon as they enter the flow, thus affecting the normal fluid component 
and hence the torque. 

As in the case of the pure superflow, we find that the unstable eigenfunctions peak 
closer to the stationary inner cylinder as the outer cylinder moves faster, and that 
the frequency Re@) of the perturbations is very small. If one compared radial 
second-sound resonances of different orders one could perhaps test this prediction 
that the vorticity is concentrated near the inner stationary cylinder. Azimuthal 
second-sound resonances are split by the Doppler effect : since the phase velocity 
Re (p ) /m is small, one should observe a very small resonance splitting (on top of the 
one due to  the base flow u:), in contrast t o  the Doppler separation for rotation of the 
inner cylinder only (in that case Re(p)/m a t  the onset has a similar value to that 
found in the classical Couette case). 

Whereas the experiments discussed above used the torque method, an alternative 
method of detecting transitions using second sound has been used in an experiment 
by Wolf et al. (1981) : the results however disagree very substantially with the torque 
results of Donnelly. In the Wolf el al. experiment the outer cylinder was held 
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stationary. Three radius ratios were used to study the first onset, 11 = 0.783, 0.8673 
and 0.9434: the corresponding aspect ratio h/S were 15.6, 25.6 and 60.0. We have 
reanalysed the data that Wolf et al. claim to be the first instability of the vortex array 
by plotting them in the form of TalTa, as a function of temperature 7’ (see figure 8) ;  
here T a  is the critical Taylor number measured in helium, while T a ,  is the critical 
Taylor number for a classical fluid, which we have calculated a t  the same radius ratio 
used in the helium experiment : these classical critical Taylor numbers are well- 
known : see e.g. Di Prima & Swinney (1981)). For the three radius ratios used in these 
experiments Ta, has the values 2032, 1877, and 1763 respectively. One expects that 
TalTa, + 1 as T + 2.172 K. On the contrary, TalTa, increases as T increases, and a t  
the highest measured temperature it is more than three orders of magnitude bigger 
than what one expects. Even the lowest values of TalTa, found in this experiment 
are nearly two orders of magnitude above the typical values we have computed. This 
should be compared to TalTa,  x 1.4 found in Donnelly’s experiment a t  T = 2.1 K 
and 7 = 0.95. One may conjecture that perhaps what was observed in the Wolf et al. 
experiment was not the first instability but a succeeding one: the azimuthal 
resonances used in the experiment perhaps were not sensitive to long wavelengths 
along the axial direction, because the increase in length of the vortices, set normally 
to the azimuthal direction of propagation of second sound, was not sufficient to cause 
the extra attenuation to be detected. 

It seems important to make sure that nothing as extraordinary as the discontinuity 
a t  the h-point suggested in figure 8 really happens. Above the h-point second sound 
does not exist, and so only the torque method can be used in both helium 1 and 
helium I1 to clarify this problem. 

7. Discussion 
The most important result emerging from this work is that  the vortex tension 

profoundly affects the nature of the instability of Couette flow. In  classical Couette 
flow, with large aspect ratios, the Taylor cells that develop far from the endwalls are 
hardly affected by the precise nature of the end conditions: in consequence, 
experiments give values of the critical Reynolds number that are in good agreement 
with infinite cylinder theory. When we are in the regime where vortex tension 
dominates, this happy situation no longer prevails. Non-axisymmetric modes with 
long axial wavelength are the first to become unstable, which means that the end 
conditions will significantly affect the onset of instability. One then has to worry 
about whether the superfluid vortices are pinned to the endwalls or can slip, 
something which may depend on the roughness of the endwall surfaces. 

In  view of this, it would seem that a future experiment on helium Couette flow 
should be designed towards exploring the transition region between the classical 
Couette regime at temperatures near the h-point and the low-temperature vortex- 
tension-dominated regime. The results presented here indicate that the transition 
region exists only over a rather narrow temperature range 2.05 K < ’I’ < 2.172 K ;  
even a t  the comparatively high temperature of 2.05 K vortex tension has a strong 
influence. It is only in this transition region that critical wavelengths shorter than 
the height of the apparatus will be found, and hence the dependence on end effects 
eliminated. Naturally, these considerations strongly favour long aspect ratios. The 
results from varying the radius ratio suggest that this should be as close to one as is 
practical, as the favoured axial wavelength increases sharply as the radius ratio is 
lowered ; there is a substantial difference between 11 = 0.95 and 9 = 0.90. The number 
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of rows of vortices across the gap a t  the onset of instability also increases as 11 + 1 ,  
so a radius ratio close to unity will improve the validity of the continuum 
approximation. 

Previous experiments have been conducted over the much wider temperature 
range 1.3 K < T < 2.172 K. In consequence, most of the experiments have been 
entirely in the vortex-dominated regime wherc the uncertainties are greatest. We 
believe that this is the principal reason why no very clear picture has emerged from 
these experiments. We are encouraged by the fact that Donnelly's experiment a t  
2.1 K, one of the very few to lie in the transition zone, and have suitable radius and 
aspect ratio, gives very good agreement with the theoretical results. 

We have said that two methods (second sound and torque) have been used in 
helium Couette experiments. The measurement of the attenuation of second sound 
is in principle the best method because it allows direct detection of the vorticity: 
second sound is not attenuated along the direction of the vortex lines, so a 
combination of axial, radial and azimuthal resonances or pulses would give much 
information about the vortices. Moreover, different modes can probe different 
regions: the fundamental radial mode is attenuated mainly by the vortices in the 
middle of the gap, while higher harmonics probe the boundary regions. 

Nevertheless, we note that in  the experiments done so far, the sensitivity of the 
second-sound method for detecting the onset of instability is somewhat in question, 
and the results from the torque method have given results in better agreement with 
theory. 

We are indebted to Professor R. J. Donnelly for having stimulated this work and 
for his hospitality a t  the University of Oregon. We also wish to thank Dr C. E. 
Swanson and Professor H. A. Snyder for helpful discussions. Dr C. F. Barenghi 
acknowledges support from SERC grant GR/D/30433. 

Appendix 
We give here a brief description of the numerical techniques we have used to 

obtain our results. After elimination of the pressures r; and gi and of the axial 
components of the velocities V,, and Vnz, the dimensionless form of the system (15)-(22) 
is reduced to four equations in V,,, K$, V,, and V,#: 

Z; C Left FC = P  C C R, yf,, e = 1 to4,  (A 1) 
f-n, s C=T, q5 f=n,  s c-7, $ 

where I, and R are operators of the form 

4 dk-1 
L,, = c L:fci,(x) dz"-lj and similarly for R,. (A 2 )  

k = l  

Experience with similar flow problems (Jones 1985b) shows that it is convenient to 
expand the velocities over truncated series of the modified Chebyshev polynomials 
TT(x),  which are defined in the interval 0 < x < 1, 
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We now define the collocation points x i ,  i = 1 . . . N which are the zeros of the 

polynomial T:(x). The four equations are evaluated a t  these points, and together 
with the eight boundary conditions we have 

N(fC) N(fc)  

C C C (L,jcTj*_i)(Xi) = P C C C (RefcT7-i)(xt) 
f=n, s c=r, $ j = l  f = n , s  c=r ,$  j=1 

for e = 1 , 2 , 3 , 4  and i = 1, . .., N .  These equations can be written in matrix form as 

(A 4) A * X  = p B -  X 

where the matrices A and B contain respectively the operators L and R,  p is the 
eigenvalue and X is a vector of length 

N(nr )  +N(nq5) +N(sr )  +N(s$)  

containing the unknown coefficients anri, a,qj, a,,., a,W of the Chebyshev expansions of 
the velocities. We then use standard routines of the Numerical Algorithm Group 
Library (NAG) to invert the matrix B and to solve the eigenvalue equation 

(B-lA) x = px. 

However, before doing so, care must be used to avoid columns or rows of zeros in 
B. We deal with the boundary conditions by choosing N(nr) = N + 4 ,  N(nq5) = N + 2 ,  
N(sr) = N + 2  and N(sq5) = N .  We eliminate the last terms j = N +  1 to N + 4  of the 
expansion of Vnr, the terms j = N + 1 to N + 2 of the expansion of V&, and the terms 
j = N + 1 to N + 2 of the expansion of V,, by direct substitution using the boundary 
conditions. In this way A and B are complex square matrices of size 4V x 4 3 ,  the 
expansion of each velocity component has N terms and we can proceed by inverting 
B and finding the eigenvalue as stated above. The NAG routine returns then 4iV 
eigenvalues: not all of them are meaningful and some are not accurate, because 
eigenfunctions which have many oscillations cannot be approximated well with a 
truncated Chebyshev series, and need more polynomials. How do we identify the 
good eigenvalues! First one notes that in the Chebyshev representation of a good 
smooth eigenfunction the first coefficients are much bigger than the last ones in the 
series, otherwise the function is not well approximated; secondly one can substitute 
a given eigenfunction and eigenvalue into the original equations and check that they 
are satisfied on a mesh of equally spaced points together with the boundary 
conditions. But the test which was always performed because it is very strict was the 
following : we go back to the original system (15)-(22) and derive eight equations of 
the first order, in a manner analogous to that used by Roberts (1965). The eigenvalue 
and eigenfunctions are then obtained using an orthonormalization method (Conte 
1966), based on a fourth-order Runge-Kutta scheme, and using the eigenvalue found 
by means of the Chebyshev technique as the initial guess. In this way all eigenvalues 
have been confirmed by an independent method. 

REFEREKCES 

BARENGHI, C. F., DONNELLY, R. J.  & VINEN, W. F. 1983 Friction on quantized vortices in 

BARKNGHI, C. F. & JONES, C. A. 1987 On the stability of superfluid helium between rotating 

BEKHAREVICH, I. L. & KHALATNIKOV, I. M. 1961 Phenomenological derivation of the equations 

helium 11. J .  Low Temp. Phys. 52. 189-247. 

concentric cylinders. Phys. Lett. A 122, 425430. 

of motion in HeII .  Sow. Phys. JETP 13,  643-646. 



The stability of the Couette jlow of helium I I  569 

BENDT, P. J. 1967 Attenuation of second sound of helium I1 between rotat’ing cylinders. Phys. 

CHANDRASEKHAR, S. & DONNELLY, R. J. 1957 The hydrodynamic stability of helium I1 between 

CONTE, S. D. 1966 The numerical solution of linear boundary value problems. SZAN Rev. 8. 

DI PRIMA, R. C. & SWINNEY, H. L. 1981 Instabilities and transition in flow bet,neen concentric 
rotating cylinders. I n  Hydrodynamic Instabilities and Transition to Turbulence (ed. H. L. 
Swinney & J. P. Gollub), pp. 139-180. Springer. 

Rev. 153, 280-284. 

rotating cylinders I. Proc. R .  Soc. Lond. A241, 9-28. 

309-321. 

DONNELLY, R.  J. 1967 Experimental Superjuidity. University of Chicago Press. 
DONNBLLY, R. J .  1959 Experiments on the hydrodynamic stability of helium TI between rotating 

cylinders. Phys. Rev. Lett. 3, 507-508. 
DONNELLY, R .  J. & LAMAR, M. M. 1988 Flow and stability of helium I1 between concentric 

cylinders. J .  Fluid Mech. 186, 163-198. 
DONNELLY, R.  J. & SWANSON, C. E. 1986 Quantum turbulence. J. Fluid Mech. 173. 387-429. 
GLABERSON, W. I. & DONNELLY, R. J. 1986 Structure, distribution and dynamics of vortices in 

helium 11. In Progress in Low Temperature Physics, vol. IX (ed. D. F. Brewer). pp. 3-142. 
North-Holland. 

HALL, H. E. 1960 The rotation of liquid helium 11. Phil. Mag. Suppl. 9, 89-146. 
HALL, H.  E. & VINEN; W. F. 1954 The rotation of liquid helium 11. 11: the theory of mutual 

friction in uniformly rotating helium 11. Proc. R. Soc. Lond. A238, 215-234. 
HEIKKILA, W. J. & HOLLIS HALLET, A. C. 1955 The viscosity of liquid helium 11. Can. J .  Phys. 

33, 42&435. 
HILLS, R. N. & ROBERTS, P. H. 1977 Superfluid mechanics for a high density of vortex lines. Arch. 

Rat. Mech. Anal.  66, 43-71. 
JONES, C. A. 1985a The transition to  wavy Taylor vortices. J .  Fluid Mech. 157, 135-162. 
JONES, C. A. 1985b Numerical methods for the transition to wavy Taylor vortices. J .  Comp. Phys. 

KHALATNIKOV, I. M. 1965 An Introduction to the Th.eory of ~ u p e r ~ u i d ~ t y .  Benjamin. 
MAMALADZE, Y. G. & MATINYAN, S. G. 1963 Stability of rotation of a superfluid liquid. SOE. Phys. 

MATHIEU, P., PLACAIS, B. & SIMON, Y. 1984 Spatial distribution of vortices and anisotropy of 
mutual friction in rotating HeII. Phys. Rev. B29, 2489-2496. 

ROBERTS, P. H. 1965 Appendix to ‘Experiments on the stability of viscous flow between rotating 
cylinders’ (by R. J. Donnelly & K. W. Schwarz). Proc. R. Soc. Lond. A283, 531-556. 

SNYDER, H. A. 1974 Rotating Couette flow of superfluid helium. In Proc. 13th Zntl Conf. Low 
Temp.  Phys. LT13, vol. 1 ,  pp. 283-287. Plenum. 

SWANSON, C. E. 6 DONNELLY, R. J. 1987 Appearance of vortices in Taylor-Couette flow of 
helium 11. J. Low Temp.  Phys. 67, 185-193. 

SWANSON, C. E., WAGNER, W. T., BARENGHI, C. F. & DONNELLY, R. J. 1987 Calculation of 
frequency and velocity dependent mutual friction parameters in helium 11. J. Low Temp.  

WOLF, P. L., PERRIN, B., HULIN, B. & ELLEAUME, J. P. 1981 Rotating Couette flow of 

61, 321-344. 

J E T P  17, 1424-1425. 

Phys. 66, 263-276. 

helium 11. J .  Low Temp.  Phys. 44, 569-593. 


